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We study the stability of relative equilibrium of a body whose center of mass 
describes a non-Keplerian circular orbit without a center of attraction, under the 

action of perturbing or controlling forces. The problem is solved under a restric- 
ted formulation, in which only the gravitational moments relative to the central 

field are taken into account. Sufficient conditions of stability of the positionsof 
equilibrium obtained are found, using the Routh theorem in the manner analog- 

ous to that developed in Cl]. 

The problem of relative equilibrium of a rigid body in a circular unperturbed orbit 
and its stability, were investigated recently in detail by many authors [ 1, 21. We find 
however, that in certain concrete problems of celestial mechanics and dynamics ofspace 

flights there is a need to generalize this problem to the case of perturbed circular orbits 
which are realized when perturbing or controlling forces are present. An example ofsuch 
a problem is the case of circular non-Keplerian orbits in the gravitational field of an 

axisymmetric planet. The author of [3] has proved, in particular, the existence of circu- 
lar orbits the plane of which is parallel to the equatorial plane of the planet. 

An interesting problem from the point of view of space dynamics is that of setting a 
synchronous stationary satellite (SS) at an arbitrary latitude. The authors of [4, 53 stud- 
ied this problem for the center of mass of the satellite, and [6] dealt with the translation- 
al-rotational motion of such a satellite under the assumption that an additional constant 
reactive force is applied to its center of mass, It was shown that a relative equilibrium 
of a body is possible when its center of mass is in circular motions in a plane that does 

not contain the center of attraction. This problem was not previously investigated. 
The aim of the present paper is to obtain sufficient conditions for the relative equi- 

librium of a rigid body when the formulation of the problem is restricted, i. e. under the 
assumption that the motion of the body relative to the center of mass does not influence 
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the motion of the center of mass itself. We assume, moreover, that the motion of the 

body relative to the center of mass is induced only by the gravitational moment of the 
central Newtonian field. 

Let 9, and r denote, respectively, the latitude and the distance of the center of mass 

of a body moving along a circular orbit from the center of attraction 0, and we attach 
to this center a stationary rectangular O&)5 coordinate system the axis 05 of which is 

perpendicular to the plane of the orbit, At the center of mass C we place the origins 

of the two rectangular coordinate systems: the axes of the first system (Csyz) which we 
shall call orbital coordinate system, will be oriented in the direction of velocity of the 

center of mass, tangentially to the meridian, and along the radius vector of the center 
of mass, while the axes of the other (CX’Y’Z’) system will coincide with the principal 

axes of inertia of the body. 

Using the expansion of the attraction force function for a rigid body in a central New- 

tonian field [ 11, we set the following expression for the altered potential energy of the 

body : 
HJ* = + $ (‘4,gJ + B-p2 + Cr3*) - q (4313 i_ lg!2 + CS3f?) 

Here A, B and C are the moments of inertia relative to the Cx’, Cy' and CZ’ axes, 

q=ctively, ~1, ~2, YS and PI, Bat & are the direction cosines of the CZ and 05 axes 
relative to the same (associated) axes, o is the angular velocity of rotation of the center 
of mass along the orbit and k is the gravitational parameter of the central field. 

Since we are planning to use the Routh theorem to show the existence of the positions 

of relative equilibrium of the body and to investigate their stability, we shall make use 

of the method of solving such problems developed by Rumiantsev in [S]. Let us there- 

fore eliminate the cosines & and y3 using the geometrical relations, and write W, in 
the form 

W * ._ $1 ]3P2 (A -C) ~~2 + 3~2 (B -C) rz” + (B - C) 63* + (B - 4 Pt--B1 (1) 

where p2 = &rs I k. Using another obvious geometrical relation 

x f p1r1+ (1 - p12 - B32)“r~~ + pa (1 - rlz - 7~~)‘~~ - sin cp = 0 

we shall seek the extremum of the function 

W = zo-sw* -j- hX 

where h is the Legendre multiplier. Then the positions of relative equilibrium will cor- 

respond to the solutions of the equations 

~=6~z(~-C)~~+~ PI- 
I 

YIPS - =[I 
(1 - 712 - pq”” I 

$=Z(B-A)~r+1 ri- 
I 

Pm 
(1 -f&2_._ j&2)'/" 

7 
= O 

L3W 
-g7W2P - C) 72 + h 

[ 
(1 - pl” - f333)“’ - 
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(1 - r12 _ ~,Z)'h 1 = O 

t3W 
aps-=. 2 (B - C) pi3 + h (1 - r12 - r33)“’ - TeF3 

I (1 - p12 - p32)'h = 
0 

which give the conditional extremum of the function (I). The solution has the form 
y1 = p1= 0, 72 : sin a, SS = sin (9, - a) 

h- (C-B) 
‘sin 2 (‘p - a) sin Za, 

cos cp ’ QZff= 3pz+coszq 
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and corresponds to the position of relative equilibrium of the body in which one of its 
principal axes of inertia (Cs’) coincides with the velocity of the center of mass, and the 

remaining two axes form the angle a with the axesofthe orbital system, the angle de- 

Fig. 1 

ficient conditions of stability. 

fined by the last formula of (2). 
When ‘p = 0, the position of equilibrium just 

obtained becomes position of equilibrium of a 
rigid body in a circular Keplerian orbit irrespec- 
tive of the value of u. It is interesting to note 

that this two-parameter family of relative equi- 
libria is independent of the geometry of the body 
mass and of the orbit radius, and is fully defined 

by the latitude cp and parameter p. Figure 1 
shows the relationship CL (v) for various values 
of u. 

In order to investigate the stability of the so- 

lutions obtained we write the conditions of posi- 
tive definiteness of the function w and this, 

together with the Routh theorem, yields the suf- 

Constructing the second order derivatives of W and taking into account (2). we use 
the Silvester criterion to obtain the following conditions of positive definiteness of the 

function IV: 
(B - C) (1 - CD) > 0, A-C +(C--B)Q,>O (3) 

[C - A + (I? - C) (I,] [(B - C) (1, !- A - .z3] -t_ 

(B - CI? F (p2, cp) > 0 
where 

p=9p~+6p~cos2~+l, ) 
F (p2, rp) -= 

1 _ 

k 

We see that when 0 < q < 3t / 2 , we have 1 - Q > 0 , Consequently the first condi- 

tion of (3) yields B > C. The third inequality of (3), after elementary computations, 

reduces unexpectedly to (C - A) (A - B) > 0 

and this. together with the previously obtained inequality 3 > C , yields the Beletskii 
condition [ 21 B>d>C (4) 

We shall show that the second condition of (3) holds for all u and cp , (0 < lo < Cc, 0 G 
9, < z / 2) provided that (4) holds. Let us therefore write this inequality in me torm 

:c (B - /l) > C - :I , x z 
1 _1- 3I.0 - r/p 

1 -i_ 3p2 i_ I/; (5) 

It can easily be shown that 0 < Y, ;< 1 for all p and 4p within the stated interval, con- 

sequently (5) holds whenever (4) holds. When B =j= C , the last inequality of (3) yields 

F (P, t~f > 0 

which clearly holds over the whole interval of variation of p and + 
Thus, the above investigation shows that the position of relative equilibrium in question 
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can be stable at all latitudes Q , while the sufficient conditions of stability fully coincide 
with the Beletskii condition (4) and do not contain any parameters of the orbit of the 
center of mass. 

The authors thank the participants of the siminar at the Chair of Celestial Mechanics 
and Gravimetry GAISh for assessing this paper. 
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The problem of selecting optimal parameters ensuring the maximum degree of 
stability, is considered for the linear oscillating systems [ 11. The upper bounds 
of the degree of stability are obtained. Necessary and sufficient conditions of 
attainability of the upper bound are formulated. Systems with one, two and three 
degrees of freedom are studied in detail. Similar problems have been already in- 
vestigated in [ 1 - 43 ~ 

1. Strtsmrrnt of the problem, We consider a system the motion of which 
is described by the following linear differential equation : 

Ax” + Bx’ -j- Cx = 0 U.1) 

Here x is an n-dimensional vector, A, B and C are n X n matrices and a dot denotes 
the derivative with respect to time. Equation (1.1) can describe e.g. small oscillations 
of a mechanical system about the position of equilibrium x = 0. Problems of the stabi- 


